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Abstract

Background: Amyloid-β (Aβ) PET is an established predictor of conversion from mild cognitive impairment (MCI) to
Alzheimer’s dementia (AD). We compared three PET (including an approach based on voxel-wise Cox regression)
and one cerebrospinal fluid (CSF) outcome measures in their predictive power.

Methods: Datasets were retrieved from the ADNI database. In a training dataset (N = 159), voxel-wise Cox regression
and principal component analyses were used to identify conversion-related regions (Cox-VOI and AD conversion-
related pattern (ADCRP), respectively). In a test dataset (N = 129), the predictive value of mean normalized 18F-
florbetapir uptake (SUVR) in AD-typical brain regions (composite SUVR) or the Cox-VOI and the pattern expression score
(PES) of ADCRP and CSF Aβ42/Aβ40 as predictors were compared by Cox models (corrected for age and sex).

Results: All four Aβ measures were significant predictors (p < 0.001). Prediction accuracies (Harrell’s c) showed step-
wise significant increases from Cox-SUVR (c = 0.71; HR = 1.84 per Z-score increase), composite SUVR (c = 0.73; HR = 2.18),
CSF Aβ42/Aβ40 (c = 0.75; HR = 3.89) to PES (c = 0.77; HR = 2.71).

Conclusion: The PES of ADCRP is the most predictive Aβ PET outcome measure, comparable to CSF Aβ42/Aβ40, with a
slight but statistically significant advantage.

Keywords: Amyloid biomarkers, Mild cognitive impairment, Alzheimer’s dementia, Conversion prediction, PET image
evaluation

Introduction
Amyloid-β (Aβ) PET (e.g., using 18F-florbetapir, also
known as 18F-AV-45) is an established biomarker for Aβ
pathology [1] and might hence be used to predict con-
version from mild cognitive impairment (MCI) to Alz-
heimer’s dementia (AD) [2–5]. Earlier studies commonly
used binary Aβ outcome measures based on visual reads

or volume of interest (VOI) analyses [2–4] or con-
tinuous Aβ measures relying on composite anatomical
regions (i.e., treating all voxels equally) [5]. However,
we recently demonstrated that voxel-wise principal
component analysis (PCA) provides an AD-specific
covariance pattern among voxels, which is superior to
the aforementioned conventional approaches [6]. An-
other promising prognostic method in PET data ana-
lysis is voxel-wise Cox regression, which we recently
applied to 18F-FDG PET in MCI [7]. However, the
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best image evaluation method is still a matter of
debate.
Aside from Aβ PET, the Aβ concentration in cerebro-

spinal fluid (CSF) is also an established non-imaging bio-
marker for Aβ pathology [8]. The ratio of the concentration
of Aβ42 to the concentration of Aβ40 (Aβ42/Aβ40) showed
the best diagnostic performance among different evaluation
methods [9, 10].
While many studies consider CSF Aβ and Aβ PET to be

equally capable of predicting cognitive decline [11–16],
some find a slight advantage for Aβ PET [17] in this re-
gard. On the other hand, recent findings suggest that CSF
indicates abnormal Aβ accumulation before Aβ PET in
the earliest stages of the disease [18] and that Aβ PET is
more strongly connected to disease progression [19].
Against this background, we used a large dataset from

the Alzheimer’s disease neuroimaging initiative (ADNI)
to compare the aforementioned three continuous Aβ
PET outcome measures and the Aβ42/Aβ40 ratio in CSF
in their ability to predict conversion from MCI to AD.
We used a training dataset, to which voxel-wise Cox re-
gression and PCA were applied to identify conversion-
related regions, and a test dataset, by use of which all
four methods were prospectively compared.

Material and methods
Subjects
All data used in the present study was provided by the ADNI
database (ClinicalTrials.gov Identifier: NCT00106899), and
comprehensive information about the ADNI project can be
found at the official website (www.adni-info.org).
For our previous study [6], 319 18F-AV-45 PET scans

were retrieved from the ADNI database. Patients with
the following criteria were included: MCI diagnosis
(“DX-Score” 2, suspected incipient Alzheimer disease
with subjective and objective memory deficits) and a
baseline 18F-AV-45 scan, at least 25 points on Mini-
Mental State Examination (MMSE), follow-up time of at
least 6 months, and no bidirectional change of diagnosis
(MCI to AD and back). This dataset was randomly split

into two equally sized cohorts: a training and a test data-
set. The training dataset has been used for voxel-wise
Cox regression and PCA to identity the Cox-VOI in the
present study (see below) and the ADCRP in our earlier
study [6]. The test dataset for the present study was fur-
ther reduced to a subset of 129 patients with available
data on amyloid-β concentration in the CSF. Details on
clinical and demographic characteristics can be found in
Table 1.

18F-AV-45 PET data and image preprocessing
Four 5-min frames were used (50 to 70min after injec-
tion of 18F-AV-45). A motion correction was applied if
necessary. All frames were summed into a single image
dataset. After spatial normalization to an in-house tem-
plate (18F-Florbetapir, constructed from nine Aβ-positive
and seven Aβ-negative elderly normal controls) in MNI
space, spatial smoothing with a 12-mm FWHM isotropic
Gaussian kernel was applied. Full details on PET acquisi-
tion protocols can be found on the ADNI website.

PET image analysis: training dataset
For each voxel, independently, a Cox model was fitted
with the z-scaled SUVR as a predictor variable, adjusted
for age and sex. Among those voxels that showed a sig-
nificant association between SUVR and conversion from
MCI to AD (FDR-corrected, p < 0.01), the 20% of voxels
with the highest hazard ratios (HR) were combined into
the “Cox-VOI.”
The same training dataset was used in our previous

study [6] to identify the AD conversion-related pattern
(ADCRP), which was also used in the present study for
the evaluation of the test dataset.

Cox regressions: test dataset
In the test dataset, four Cox models were built in order
to compare their prognostic performance concerning
MCI-to-AD conversion. Each model included one of the
four Aβ measures as the main predictor variable (all z-
scaled), as well as age and sex as covariates:

Table 1 Clinical and demographic characteristics of the included Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants

Training dataset (n = 159) Test dataset (n = 129)

MCI-c (n = 41) MCI-nc (n = 118) MCI-c (n = 29) MCI-nc (n = 101)

Mean age (± S.D.) [years] 72 ± 7 73 ± 8 73 ± 7 73 ± 8

Sex [m/f] 14/27 55/63 15/14 59/42

Mean Aβ42/Aβ40 in CSF (± S.D.) Not assessed 0.10 ± 0.06 0.15 ± 0.06

PES of ADCRP (± S.D.) 18 ± 19 − 6 ± 18 16 ± 13 − 2 ± 17

Median follow-up time (95% C.I.) [months] 48 (36–51) 47 (35–51)

Cox-SUVR (± S.D.) 1.7 ± 0.3 1.4 ± 0.2 1.6 ± 0.2 1.5 ± 0.2

Composite SUVR (± S.D.) Not assessed 1.6 ± 0.2 1.4 ± 0.2

MCI-c mild cognitive impairment–converters, MCI-nc MCI non-converters, S.D. standard deviation, CSF cerebrospinal fluid, PES pattern expression score, SUVR
standardized uptake value ratio
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1. Composite SUVR: the mean standardized uptake
value ratio (SUVR, reference region: cerebellum) was
calculated within a VOI comprising anatomical
regions with the highest Aβ load in AD (established in
a previous study [20] using Pittsburgh compound B).

2. Cox-SUVR: the mean SUVR within the Cox-VOI
was read-out and weighted in a voxel-wise fashion by
its HR (calculated in the training dataset; thus, voxel
with a higher predictive value contributed more).

3. PES of ADCRP: the individual pattern expression
score (PES) was calculated for the ADCRP that has
been established in our previous study [6]. The PES
was evaluated by the topographic profile rating
algorithm, as described in [21].

4. CSF Aβ42/Aβ40: the Aβ42/Aβ40 concentration ratio
from CSF was used the main predictor variable.

Results
Training dataset
Figure 1 depicts three-dimensional surface projections of
HRs calculated by voxel-wise Cox regression in the
training dataset, which follows the known distribution of
Aβ pathology in AD. Voxels with the top 20% of HR are
illustrated in Fig. 2 (red regions, 79 ml), which cover
parts of the striatum and mesial frontal and superior
temporal cortices as well as the precuneus and insula.
These regions only partially overlap (42 ml) with the lar-
ger anatomical VOI used to calculate the composite
SUVR (Fig. 2, blue regions, 584 ml).

Test dataset
All four Cox models significantly predicted MCI-to-AD
conversion in the test dataset (all Wald tests p < 0.001).

Pairwise comparisons between models (Fig. 3), using the
likelihood ratio test, revealed significant step-wise im-
provements (p < 0.001) from the model with Cox-SUVR
(HR = 1.84 per Z-score increase [95% C.I. 1.31–2.56])
with a concordance of Harrell’s c = 0.71 (95% C.I. 0.59–
0.82) to the model incorporating composite SUVR (HR =
2.18 [1.51–3.16]) with c = 0.73 (0.62–0.84), to the model
relying on CSF Aβ42/Aβ40 (HR = 3.89 [2.10–7.19]) with
c = 0.75 (0.65–0.87), and, finally, to the model using PES
of ADCRP as a predictor (HR of 2.71 [1.78–4.13]) with
c = 0.77 (0.66–0.89).

Discussion
In the present study, all three tested Aβ PET outcome
measures and the CSF Aβ42/Aβ40 ratio were able to pre-
dict the development of AD in patients diagnosed with
MCI. Among these Cox models, each containing the
main predictor variable and all corrected for age and
sex, the model with the PES of ADCRP showed the
highest concordance (Harrell’s c). Binary outcome mea-
sures such as visual reads or threshold-based methods
have been neglected for this study, as we have shown in
our previous work [6] that binary measures perform
worse than continuous Aβ PET outcome measures.
Cox-SUVR represents a novel Aβ PET outcome meas-

ure, which we explored based on our previous observa-
tion that voxel-wise Cox regression is a promising
predictor of MCI-to-AD conversion when applied to
FDG PET data [7]. In the training dataset, we tested sev-
eral HR thresholds (using the top 50%, 30%, 20%, and
10%) for Cox-SUVR calculation. All threshold-based ap-
proaches showed improvement over using simply all sig-
nificant voxels. The 20% threshold performed best and

Fig. 1 Surface projections of the hazard ratios (HRs) from the voxel-wise Cox regressions in the training dataset. HR is expressed per one unit
increase of the z-scaled standardized uptake value ratio (SUVR; reference region: cerebellum) of 18F-florbetapir
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was thus chosen. The distribution and magnitude of
voxel-wise HRs (Fig. 1) are largely in agreement with re-
gions of known Aβ deposition in AD [22–25], which
were used for the calculation of composite SUVR as an
established prognostic marker [20]. However, the Cox-
VOI (79 ml) was much smaller than the anatomical VOI
(584 ml), with only little overlap (42 ml).
Both Aβ PET and determination of Aβ from CSF offer

an excellent way to predict the development of Alzhei-
mer’s disease: Aβ from CSF detects amyloid pathology
earlier than Aβ PET [18], but both are predictors in their
own right, such that patients with concordant CSF and
amyloid PET findings have a worse prognosis than those
with discordant findings [26, 27]. The choice regarding

which of the two will be applied should depend on the
availability and the patient’s preference.
Evaluation of Aβ PET by PES from PCA might easily

be implemented to support clinical routine since Eidel-
berg [28] developed a freely available toolbox (Scanvp/
SSMPCA toolbox available at the website of the Fein-
stein Institute for Medical Research, http://feinsteinneur-
oscience.org/software, [29]) for Statistical Parametric
Mapping (SPM). The prognostic value of Aβ PET might
also benefit from scanner development (higher spatial
resolution and better signal-to-noise ratio). Finally, an
ideal combination in the future of AD diagnosis might
be that of Aβ PET with tau PET, allowing for a classifi-
cation (regarding “A” and “T”) following the NIA-AA re-
search framework.

Fig. 2 Volume of interest (VOI) overlays (onto the MNI-152 MRI template) showing significant voxels with top 20% hazard ratios (HRs) from voxel-
wise Cox regressions in the training dataset (red, Cox-VOI) used to assess Cox-SUVR and the anatomical VOI (blue; taken from [20]) employed for
composite SUVR calculation
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Limitations
In contrast to the novel Cox-SUVR, composite SUVR
and the CSF Aβ42/Aβ40 ratio are established diagnostic
and prognostic biomarkers of AD [1–5, 8]. Several other
factors might be considered to contribute to the perform-
ance ranking obtained from our analyses: First, only for
the derivation of the Cox-VOI the time-to-conversion in-
formation was used, but unexpectedly, it performed worst
in the overall comparison. We assume, however, that time
information might prove more beneficial in datasets with
a larger inter-individual variability of time-to-conversion
(the interquartile range was just 13months in the test
dataset). Secondly, while CSF Aβ42/Aβ40 is an integral
measure for the production and clearance of Aβ at a given
time and across all brain regions, Aβ PET represents a dir-
ect measurement of spatial Aβ accumulation. Thirdly,
while all PET measures tested here provide regional
weighting, this is only binary in the case of composite
SUVR. By contrast, regional weighting is continuous in
Cox-SUVR and PES. Last, the PES calculation includes
not only regions with high Aβ accumulation or associated
with an increased risk of conversion, but all voxels of the
brain (i.e., possibly also patterns associated with lower risk
or protective features). A combination of these factors
might explain why the PES of ADCRP performed best in
this comparison—by a small margin.

Conclusion
All tested Aβ outcome measures significantly predicted
conversion from MCI to AD. The PES of ADCRP is
comparable to CSF Aβ42/Aβ40, with a slight but statisti-
cally significant advantage over CSF Aβ42/Aβ40.
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